Endoleak Atlas

Case 1 79-year-old female underwent a CTA after EVAR.

Leak from the proximal attachment-site endograft

Case 2

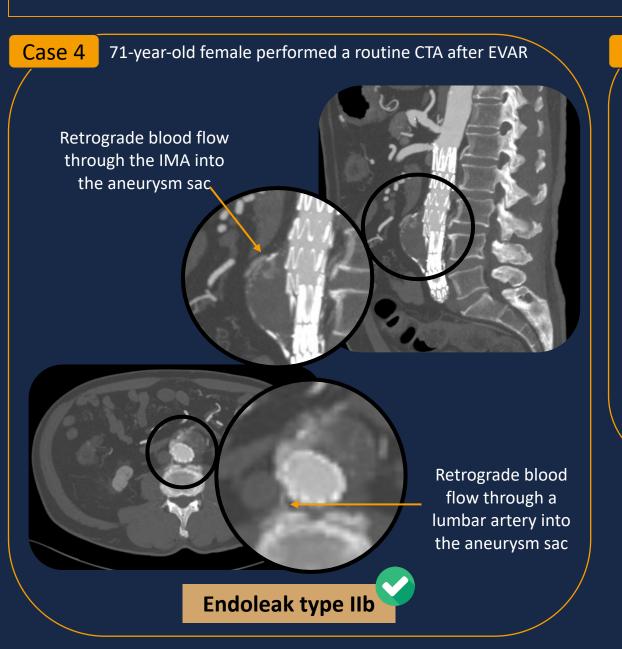
63-year-old female presented with right groin pain. She had a PMH of EVAR. A CTA was performed.

Leak from the distal attachment-site endograft

Endoleak type Ib

Case 3

75-year-old male performed an EVAR. The immediate postdeployment angiography showed the following findings:


"Blush" inferring graft porosity

Endoleak type IV

Endoleak Atlas

Case 5 82-year-old male presented with an epigastric pain after EVAR

leakage of blood through the body of the stent-graft due to rupture of its material

Endoleak type IIIb

To be continued...

Endoleak Assessment after Endovascular Aortic Aneurysm Repair: Main Concepts

First things first...

- 1 What is an AAA? Abnormal dilatation or bulging of the aorta that has the tendency to expand and rupture
- When is necessary to operate? Aneurysm diameter > 5.0–5.5 cm or symptomatic, and an increase in aneurysm size > 5 mm in a 6-month interval and > 10 mm per year
- What is EVAR? Minimally invasive procedure introduced as an alternative to OR in patients with AAAs. It involves placing a stent-graft in the aorta to serve as a blood flow conduit through the aneurysm sac
- What is an endoleak? Leakage of blood into an excluded aneurysm sac after stent-graft placement that occurs in approximately 26% of EVAR patients
- Do we need to worry? If undetected, an endoleak may progress and cause aneurysm sac expansion or rupture, which can be fatal.

Endoleak Assessment after Endovascular Aortic Aneurysm Repair: The role of imaging

CT angiography (CTA) is the most widely used imaging method for endoleak detection

EVAR requires lifelong imaging surveillance. Recommended follow-up: 1, 6 and 12 months after EVAR and then annually thereafter.

High spatial and contrast resolution, allows multiplanar two-dimensional and three dimensional (3D) postprocessing, remarkable accuracy, widespread accessibility, speed, and relative noninvasiveness.

Estimated sensitivity and specificity of 83 and 100%, respectively, for detecting endoleaks

Protocol:

Non-contrast → differentiate calcifications from contrast leakage

Early arterial phase → detect most of endoleaks (may indicate high-flow)

Delayed phase → detect low-flow endoleaks

Endoleak classification	Definition	
Primary	appear within 30 days of stent-graft placement	
Secondary or delayed	appear after 30 days, following at least one negative imaging finding.	

Endoleak Assessment after Endovascular Aortic Aneurysm Repair: Classification

Туре		Mechanism	Management	Percentage of endoleaks
l*	а	Leak from the proximal attachment-site endograft		12%
	b	Leak from the distal attachment-site endograft	Intervention required urgently upon recognition	
	С	Leak from the iliac occluder		
II	а	Retrograde blood flow through one collateral artery into the aneurysm sac	Observation and surveillance until resolved or	76%
	b	Retrograde blood flow through two or more collateral arteries** into the aneurysm sac	aneurysm sac expansion***	
III*	а	Junctional separation of modular components of the device	Intervention required urgently upon recognition	3%
	b	Stent-graft fabric disruption		
IV		Stent-graft wall porosity	Self-limited, no treatment required	3%
V		Endotension****	Unclear	6%

^{*:} high-flow

^{**:} most commonly the inferior mesenteric artery (IMA) or a lumbar artery

^{***:} treatment is advisable if persists for over 6 months and if the sac expands more than 5 mm compared to preprocedural CT measurements

^{****:} continued growth of an excluded aneurysm sac without radiologic evidence of a leak