Tabela 1. Características dos estudos incluídos.

Autores (ano)	Tipo de	Nº de	Média de idade	LRM	LRM	Indicações LRM				
11400100 (4210)	estudo	pacientes	(anos)*	T2	CE					
House et al., (2023)	P	48	13 (9-15)	S	N	Calcular o volume de linfa no SLC em pacientes PO de Fontan.				
Moosmann et al., (2022)	R	33	7.5 (4-11)	S	N	Localizar alterações no SLC em pacientes PO de Fontan.				
Pieper et al., (2022)	R	11	0.5 (1.2-50)	S	S	Localizar alterações no SLC em pacientes com Sd. Noonan.				
Savla et al., (2022)	R	31	9±4	N	S	Localizar alterações no diâmetro do DT em pacientes com fisiologia de Fontan.				
Bordonaro et al., (2021)	R	3	7±1	S	S	Localizar alterações no SLC em pacientes com BP PO de CC e auxiliar na EDT.				
Gooty et al., (2021)	R	45	4.3 (0.9-35.1)	S	N	Localizar alterações no SLC em pacientes PO de Glenn/Fontan.				
Chen et al., (2020)	R	5	47 (1-57)	S	S	Localizar alterações no SLC em pacientes com QTX PO da aorta torácica.				
Dittrich et al., (2020)	R	42	3.8 (2.7-4.3)	S	N	Localizar alterações no SLC 6 meses após cirurgia de Fontan.				
Kreutzer et al., (2020)	P	13	4 (2.8-22)	S	N	Localizar alterações no SLC em pacientes pré operatórios de Fontan.				
Moedano et al., (2020)	R	6	20.6 (11.1-40)	S	N	Localizar alterações no SLC em pacientes com CC.				
Pieper et al., (2020)	R	25	54±18	N	S	Auxilío no planejamento cirúrgico (EDT) de pacientes com QTX PO de CC.				
Biko et al., (2018)	R	10	1.5 (0.2-7)	S	S	Localizar alterações no SLC em pacientes com Sd. Noonan e QTX.				
Pimpalwar et al., (2018)	R	23	4 (0.2-29)	N	S	Localizar alterações no SLC em pacientes com BP/EPP/QTX PO de Glenn/Fontan.				
Savla et al., (2017)	R	25	2 (0.3-4.3)	S	S	Localizar alterações no SLC em pacientes com QTX PO de CC.				
Dori et al., (2016)	R	18	8.6 (2.3-14.9)	S	S	Localizar alterações no SLC em pacientes com BP PO de Glenn/Fontan e auxiliar na EDT.				
Itkin et al., (2016)	P	7	50 (35-75)	S	S	Auxilio na EDT em pacientes com BP – localizar extravazamento SLC.				
Krishnamurthy et al., (2015)	R	6	17 (4-29)	N	S	Localizar alterações no SLC em pacientes com BP/EPP/QTX PO de Glenn/Fontan.				
Dori et al., (2014)	R	48	13.5 (0.6-37.3)	S	N	Descrever e comparar as alterações no SLC em pacientes PO de Glenn(n=11) ou Fontan(n=27) com pacientes PO de outras CC (controle) (n=10).				

BP: Bronquite Plástica; CC: Cardiopatias Congênitas; DT: Ducto Torácico; EDT: Embolização do Ducto Torácico; EPP: Enteropatia Perdedora de Proteínas; LRM: Linfangiografía por Ressonância Magnética; N: Não; P: Prospectivo; PO: Pós Operatório; R: Retrospectivo; QTX: Quilotórax; S: Sim; SLC: Sistema Linfático Central; *: Dados fornecidos em média e desvio padrão ou mediana (mínimo e máximo), considerando o momento do estudo de LRM.

Tabela 2. Dados clínicos e achados de imagem dos estudos selecionados.

Autores (ano)	Score do estudo	Cardiopatia congênita	Apresentação clínica (SLC)	Resumo dos achados de imagem					
House et al., (2023)	11	SCEH(n=15), AT(n=11), DVSVD(n=10), DVEVE(n=9), DAVT(n=3)	QTX(n=5), EP(n=1)	Os autores não descrevem os achados adicionais de imagem.					
Moosmann et al., (2022)	10	SCEH(n=14), DVSVD(n=10), DVSVE(n=4), AT(n=3), CE(n=2)	EP(n=5), EPP(n=2)	Colaterais linfáticos supraclaviculares(n=5/33); Colaterais linfáticos no mediastino(n=19/33); Colaterais linfáticos no mediastino e nos pulmões(n=9/33).					
Pieper et al., (2022)	13	MH(n=5), AP(n=4), SCEH(n=2)	QTX(n=10), LP(n=9)	Colaterais linfáticos supraclaviculares(n=9/11); Fluxo retrógrado de linfa do DT para os pulmões(n=8/11).					
Savla et al., (2022)	12	SCEH(n=13), AT(n=7), DVSVD(n=7), DVEVE(n=4)	BP(n=21), EP(n=13), EPP(n=9)						
Bordonaro et al., (2021)	8	SCEH(n=2), Ebstein + AP(n=1)	BP(n=3)	Fluxo retrógrado de linfa do DT para os pulmões(n=2/3).					
Gooty et al., (2021)	10	VUF(n=45)	NM	Completa delineação do DT utilizando BFFE+T2(n=45); Colaterais linfáticos supraclaviculares (n=14/45); Colaterais linfáticos supraclaviculares e no mediastino(n=7/45); Colaterais linfáticos supraclaviculares, no mediastino e nos pulmões(n=3/45).					
Chen et al., (2020)	12	NM	QTX(n=5)	Extravazamento de linfa no SLC com obstrução do DT (n=4/5).					
Dittrich et al., (2020)	10	NM	EP(n=9)	Congestão linfática supraclavicular(n=29/42); Congestão linfática abdominal(n=8/42).					
Kreutzer et al., (2020)	12	SCEH(n=4), DVEVE(n=4), Heterotaxia(n=2), DVSVD(n=1), Ebstein(n=1) e AP(n=1)	NM	Colaterais linfáticos supraclaviculares(n=4/13); Colaterais linfáticos supraclaviculares, no mediastino e nos pulmões(n=3/13); Colaterais linfáticos supraclaviculares e no mediastino(n=2/13).					

Continuação da Tabela 2. Dados clínicos e achados de imagem dos estudos selecionados.

Moedano et al., (2020)	10	NM	LP(n=2), EPP(n=1),	Colaterais linfáticos supraclaviculares(n=1/6); Extravazamento de linfa no SLC sem obstrução do DT (n=1/6).			
Pieper et al., (2020)	14	NM	QTX(n=25)	Identificação de rotas de acesso transabdominal para intervenção(n=23/25); Extravazamento de linfa no SLC (n=22/25); Variações anatômicas do DT(n=15/25).			
Biko et al., (2018)	11	SCEH(n=4), CIA(n=4), AP(n=1), MH(n=1)	QTX(n=10)	Fluxo retrógrado de linfa do DT para os pulmões(n=6/10); Duplicação do DT(n=1/10).			
Pimpalwar et al.,	13	AT(n=8), SCEH(n=6), AP(n=5),	EP(n=12), QTX(n=9),	Extravazamento de linfa no SLC com obstrução do DT(n=10/23); Extravazamento			
(2018)	13	VUF(n=4)	EPP(n=1), BP(n=1)	de linfa no SLC sem obstrução do DT(n=8/23).			
Savla et al., (2017)	11	SCEH(n=10), Heterotaxia(n=6), TF(n=5),	OTV(n=25)	Fluxo retrógrado de linfa do DT para os pulmões(n=16/25); Extravazamento de linfa			
		TGA(n=2), AP(n=1), AT(n=1)	QTX(n=25)	no SLC(n=9/25).			
Dori et al., (2016)	12	SCEH(n=8), Heterotaxia(n=3),	DD(n=19)	Dilatação do DT(n=16/18); Fluxo retrógrado de linfa do DT para os			
		DVEVE(n=3), AT(n=3), TGA(n=1)	BP(n=18)	pulmões(n=15/18); Duplicação do DT(n=2/18).			
Itkin et al., (2016)	11	NM	BP(n=7)	Fluxo retrógrado de linfa do DT para os pulmões(n=6/7).			
Krishnamurthy et al.,	12	SCELI(n=2) AT(n=2) VIIIE(n=1)	BP(n=4); EPP(n=1);	Elipso metaló amo do do limbo do DT momo os multas a co(m=2/6)			
(2015)	12	SCEH(n=3), AT(n=2), VUF(n=1)	QTX(n=1)	Fluxo retrógrado de linfa do DT para os pulmões(n=3/6).			
		SCEH(n=16), DSAVT(n=8),		Aumento no diâmetro do DT dos pacientes PO Glenn/Fontan quando comparado			
Dori et al., (2014)	12	Heterotaxia(n=7), AP(n=7), AT(n=4),	EPP(n=4), BP(n=1), $OTV(n=1)$	com o grupo controle(p=0.016); Colaterais linfáticos supraclaviculares(n=18/48);			
		TGA(n=4), TF (n=1), Ebstein(n=1)	QTX (n=1)	Fluxo retrógrado de linfa do DT para os pulmões(n=2/48).			

AP: Atresia Pulmonar; AT: Atresia Tricúspide; BP: Bronquite Plástica; CE: Coração Entrecruzado; DVEVE: Dupla Via de Entrada do Ventrículo Esquerdo; DVSVD: Dupla Via de Saída do Ventrículo Direito; DVSVE: Dupla Via de Saída do Ventrículo Esquerdo; EP: Efusão Pleural; EPP: Enteropatia Perdedora de Proteínas; LP: Linfangiectasia Pulmonar; MH: Miocardiopatia Hipertrófica; NM: Não Mencionado; QTX: Quilotórax; SCEH: Síndrome do Coração Esquerdo Hipoplásico; SLC: Sistema Linfático Central; TF: Tetralogia de Fallot; TGA: Transposição das Grandes Artérias; VUF: Ventrículo Único Funcional.

Tabela 3. Protocolos utilizados para LRM T2.

Autores (ano)	Campo B0 Seq. de Pulso		Tamanho do Voxel (mm)			FA (°) NSA		Saturação da Gordura	Outras técnicas	
House et al., (2023)	1,5T	3D SPACE	1.2x1.2x1.2	3500/700	140	1	5	S	Trigger respiratório	
Moosmann et al., (2022)	1,5T	2D PROPELLER	1.1x1.1x6.0	1800/110	160	1	1	S	Apneia	
Pieper et al., (2022)	1,5T	3D TSE	1.2x1.2x1.2	3000/600	NM	1	4-5	S	Trigger respiratório	
Bordonaro et al., (2021)	1,5T	3D SPACE	1.4x1.4x1.4	2500/700	140	1	NM	S	Trigger respiratório	
Gooty et al., (2021)	1,5T	3D TSE	1.1x1.1x1.8	2500/700	140	1	2-5	S	Trigger respiratório	
Chen et al., (2020)	3T	3D TSE	NM	1700/650	NM	1	NM	S	Trigger respiratório	
Dittrich et al., (2020)	1,5T	3D TSE	1.1x1.1x1.1	2500/650	140	1	NM	S	Trigger cardíaco e respiratório	
Kreutzer et al., (2020)	1,5T	3D TSE	1.0x1.0x2.5	1700/767	NM	2	8	S	Trigger respiratório	
Moedano et al., (2020)	3T	3D SPACE	1.1x1.1x1.1	5000/701	115	2	13	S	Trigger respiratório	
Biko et al., (2018)	1,5T	3D SPACE	1.3x1.3x1.3	2500/650	140	1	2-5	S	Trigger cardíaco e respiratório	
Savla et al., (2017)	1,5T	3D TSE	1.2x1.2x1.2	2500/650	140	1	2-5	S	Trigger cardíaco e respiratório	
Dori et al., (2016)	1,5T	3D TSE	1.2x1.2x1.2	2500/650	140	1	2-5	S	Trigger cardíaco e respiratório	
Itkin et al., (2016)	1,5T	3D TSE	1.2x1.2x1.2	2500/650	140	1	2-5	S	Trigger cardíaco e respiratório	
Dori et al., (2014)	1,5T	3D TSE	1.1x1.1x1.1	2500/650	140	1	2-5	S	Trigger cardíaco e respiratório	

B0: Intensidade do campo magnético principal; FA: Flip Angle; LRM: Linfangiografía por Ressonância Magnética; NM: Não Mencionado; NSA: Number of Signal Averages; PROPELLER: Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction; Seq: Sequência; S: Sim; SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolution; T: Tesla; TA: Tempo de Aquisição; TE: Tempo de Repetição; TSE: Turbo Spin Echo.

Tabela 4. Protocolos utilizados para LRM Dinâmica T1.

Autores (ano)	Campo B0	Seq. de Pulso	Tamanho do Voxel (mm)	TR/TE	FA (°)	TIAPC (min)	TA (min)	TTP (min)	Saturação da Gordura	Outras técnicas
Pieper et al., (2022)	1,5T	mDIXON	0.9x0.9x1.5	5.2/1.8	20	1	0,5	50	S	NM
Savla et al., (2022)	1,5T	TWIST	1.3x1.3x1.2	3.0/1.0	25	1	15	50	S	NM
Bordonaro et al., (2021)	1,5T	TWIST	1.3x1.3x1.3	2.5/0.9	30	1	15	NM	S	3D COR. THRIVE
Chen et al., (2020)	3T	THRIVE	NM	3.0/1.5	15	2	1	NM	S	NM
Pieper et al., (2020)	1,5T	mDIXON	NM	5.4/1.8	NM	5	0,5	45	S	NM
Biko et al., (2018)	1,5T	TWIST	1.2x1.2x1.2	3.0/1.0	25	1	15	40	S	3D COR. THRIVE
Pimpalwar et al., (2018)	1,5T	THRIVE	1.3x1.3x1.3	4.0/1.9	10	2	0,5	50	S	AXIAL STIR
Savla et al., (2017)	1,5T	TWIST	1.2x1.2x1.2	3.0/1.0	25	1	15	50	S	NM
Dori et al., (2016)	1,5T	TWIST	1.2x1.2x1.2	3.0/1.0	25	1	15	40	S	NM
Itkin et al., (2016)	1,5T	TWIST	1.2x1.2x1.2	3.0/1.0	25	1	15	40	S	NM
Krishnamurthy et al., (2015)	1,5T	THRIVE	1.3x1.3x1.3	4.0/1.9	10	2	0,5	50	S	AXIAL STIR

B0: Intensidade do campo magnético principal; FA: Flip Angle; LRM: Linfangiografia por Ressonância Magnética; NM: Não Mencionado; PROPELLER: Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction; Seq: Sequência; SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolution; STIR: Short Tau Inversion Recovery; T: Tesla; TA: Tempo de Aquisição da sequência de LRM; TE: Tempo de Eco; THRIVE: T1 High Resolution Isotropic Volume Excitation; TIAPC: Tempo para Início da Aquisição aPós injeção do Contraste intranodal; TR: Tempo de Repetição; TSE: Turbo Spin Echo; TTP: Tempo Total do Protocolo; TWIST: Timeresolved angiography With Interleaved Stochastic Trajectories;