Table 1. Characteristics of the unenhanced MR pulmonary angiography studies

Author	Year	Country	Study Design	Center	n	PE Prevalence (%)	Time interval*	Selection	Scanner	Sequences	MR phased- array coil	Non- diagnostic exams (%)
											8-channel	
									1.5T,	Non-breath-hold	anterior coil +	
						38.1			Siemens	free-induction	6-channel	
Kalb et al.	2012	USA	Prospective	Single	22	(67/176) **	30.3h	Confirmed	Healthcare	TrueFISP	posterior coil	1/23 (4.3)
										Non-breath-hold		
									1.5T, GE	and breath-hold		
						75.0			Medical	fat-suppressed	8-channel torso	
Kaya et al.	2019	Turkey	Prospective	Single	44	(33/44)	72h	Suspected	Systems	bSSFP	coil	1/44 (2.3)
											6-element coil	
						21.0			1.5T,		+ two-dorsal	
	•••	~	27/1	a		31.0			Siemens	Non-breath	segments of the	0/40 /40 0
Kluge et al.	2006	Germany	N/A	Single	62	(19/62)	16min	Suspected	Healthcare	TrueFISP	spine-array coil	8/62 (12.9)
									1.500	Cartesian bSSFP-	18-element	
C.I.I.D. I						50.0			1.5T,	MRA, ECG-	body coil + 32-	44/1500
Salehi Ravesh et	2020	C	D	C:1-	20	50.0	241-	C1	Siemens	gated radial	element spine	44/1500
al.	2020	Germany	Prospective	Single	30	$(30/60)^{\P}$	24h	Suspected	Healthcare	QISS-MRA	coil	(2.9)
									1 <i>5</i> T		18-element	
						41.4			1.5T, Siemens	2D free-breathing	body coil + 32-	
Nyren et al.	2016	Sweden	Prospective	Single	70	41.4 (29/70)¶	48h	Suspected	Healthcare	SSFP	element spine coil	N/A
ryren et al.	2010	Sweden	Trospective	Single	70	(29/10)	4011	Suspected	Healthcare	Axial & Coronal	COII	IN/A
						70.0			1.5T,	WB bSSFP:	8-channel	
Osman et al.	2016	Egypt	Prospective	Single	50	(35/50)	48h	Suspected	Philips	Axial BB	cardiac coil	N/A
Osman et al.	2010	Баург	Tiospective	Singic	50	(33/30)	7011	Suspected	1.5T,	TAIGI DD	cardiac con	11/11
						22.0			Siemens	Non-breath	8-channel body	
Pasin et al.	2017	Brazil	Prospective	Single	91	(20/91)	N/A	Suspected	Healthcare	TrueFISP	surface coil	N/A
i abili et al.	2017	DIULII	Tiospective	Single	71	(20/71)	11/11	Suspected	Traincare	11401101	barrace con	1 1/ 1 1

Note. - $BB = black\ blood;\ bSSFP = balanced\ steady-state\ free\ precession;\ ECG = electrocardiography;\ MRA = magnetic\ resonance\ angiography;\ N/A = not\ available;\ PE = pulmonary$ embolism; QISS = quiescent-interval slice-selective; TrueFISP = true fast imaging with steady-state precession; WB = white blood.

^{*} Average time interval between the CTPA and MRI scans

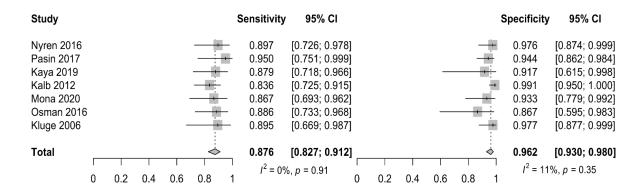
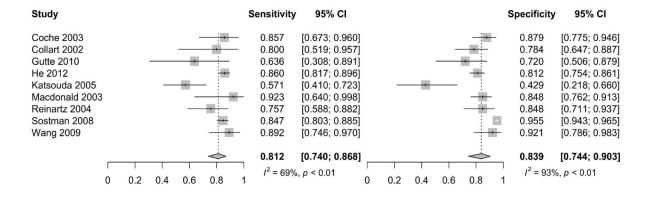

^{**} Authors only reported PE prevalence per pulmonary artery branches, not per-patient In these studies, cases of PE were paired with healthy volunteers without PE

Table 2. Characteristics of the included V/Q studies


Author	Year	Country	Study Design	Center	Sample size	PE Prevalence (%)	Average interval*	Selection	Scanner	RP - Ventilation	RP - Perfusion	Diagnostic criteria	Non-diagnostic exams (%)
Coche et al.	2003	Belgium	Prospective	Single	94	29.8 (28/94)	24h	Suspected	Single-headed γ- camera, 400AC, GE Medical Systems	81mKr	99mTc-MAA	PIOPED	N/A
Collart et al.	2002	Belgium	Prospective	Single	70	22.8 (15/66) 30.5	24h	Suspected	Double-headed γ- camera, PRISM 2000 XP, Picker Single-headed γ- camera, ADAC, Philips Medical	81mKr	99mTc-MAA	PISA-PED	44/70 (62.9)
Gutte et al.	2010	Denmark	Prospective	Single	41	(11/36)	N/A	Suspected	Systems	81mKr	99mTc-MAA	N/A	N/A
He et al.	2012	China	Prospective	Multi	544	59.0 (321/544)	24-72h	Suspected	Double-headed γ- camera, ECAM, Siemens	99mTc Technegas	99mTc-MAA	PISA-PED	N/A
Katsouda et al.	2005	Greece	Prospective	Single	63	66.7 (42/63)	3-12h	Suspected	N/A	N/A	N/A	PIOPED	14/63 (22.2)
Macdonald et al.	2004	Australia	Prospective	Single	112	24.1 (27/112)	24h	Suspected	N/A	99mTc Technegas	99mTc-MAA	Modified PIOPED	81/112 (72.3)
Reinartz et al.	2004	Germany	Retrospective	Single	83	44.6 (37/83)	72h	Suspected	Double-headed γ- camera, ECAM, Siemens	99mTc Technegas 133Xe or	99mTc-MAA	Modified PIOPED	15/83 (18.1)
Sostman et al	2008	USA	Prospective	Multi	910	22.6 (168/742) 51.2	N/A	Confirmed	Different single- and double-headed γ-cameras Single-headed γ- camera, GCA	99mTc-DTPA or 99mTc- PYP	99mTc-MAA	PIOPED II Modified	241/742 (26.5)
Wang et al.	2009	China	Prospective	Single	82	(42/82)	24-72h	Suspected	7100A, Toshiba	99mTc-DTPA	99mTc-MAA	PIOPED	5/82 (6.1)

Note. - 133Xe = xenon gas; 81mKr = krypton 81m; 99mTc = technetium 99m; DTPA = diethylenetriaminepentaacetic acid; MAA = macroaggregated albumin; N/A = not available; PE = pulmonary embolism; PIOPED = Prospective Investigation of Pulmonary Embolism Diagnosis; PISAPED = Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis; PYP = pyrophosphate; RP = Radiopharmaceutical * Average time interval between the CTPA and V/Q scans

Figure 1. Forest plot of the pooled sensitivity of non-contrast MR pulmonary angiography in the detection of pulmonary embolism

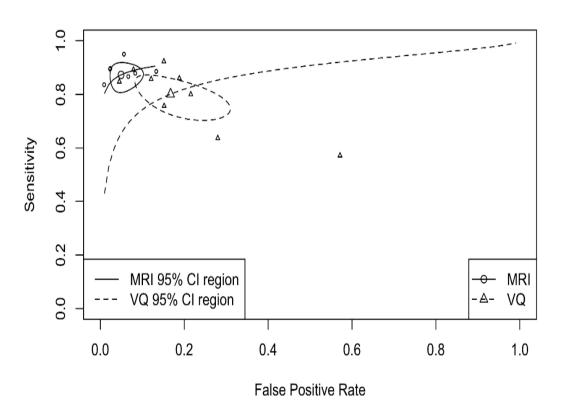


Figure 2. Forest plot of the pooled specificity of V/Q scintigraphy in the detection of pulmonary embolism

Figure 3. Summarized receiver-operating curves (SROC) using a bivariate approach

SROC curves for VQ and MRI

